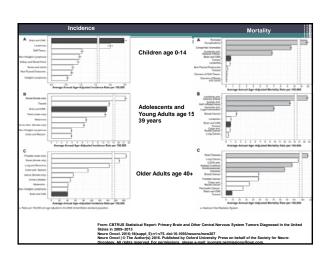
Challenges and Novel Approaches in Glioma Treatment

Mina Lobbous, MD Department of Neurology Division of Neuro-Oncology University of Alabama at Birmingham

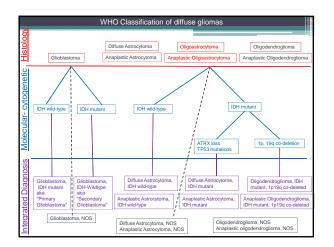
Disclosure

No conflict of interest


Objectives

- Overview of updates WHO classification for Gliomas
- Current treatment modalities for gliomas
- Novel approaches and future directions.

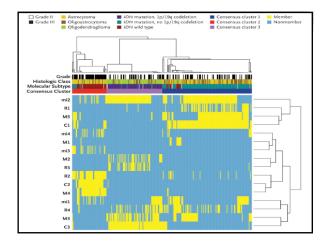
Gliomas


- Etiology:
 > No lifestyle exposure is linked to glioma susceptibility (Glioma SE)
 > Ionizing radiation in children

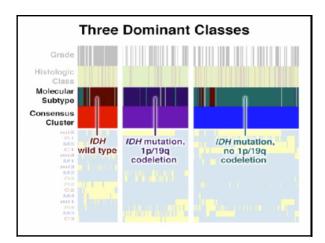
- Impact:
 Second leading cause of cancer death for young men age 20-40
 Second most common malignancy of children, leading solid cancer and leading cause of cancer death in children
 5-year survival less than 4% for GBM
- Public health cost of disease and treatment among highest in oncology.
 Projections of the Cost of Cancer Care in the United States: 2010-2020, ranks brain cancer as the most expensive in terms of annualized net cost for care per patient (\$140,000 for initial care)
- Years of life lost greater than 20 years per person
 UK: British J Cancer (2005) 92:241-245 #1 of 17 cancer sites
 US: SEER 2002 #4 of 22 cancer sites

WHO Grade	WHO	WHO Designation		Histological Criteria		
1	Piloo	Pilocytic Astrocytoma				
11		Diffuse Astrocytoma		One criterion: usually nuclear atypia		
		Anaplastic Astrocytoma		Two criteria: usually nuclear atypia and mitotic activity		
IV Gliot		olastoma		Three criteria: nuclear atypia, mitosis, endothelial proliferation and/or necrosi		
	WHO grade	A typi a	Mitose	s E ndothelial Proliferatio n	Necrosi s	Average Survival
Astrocytoma	II	+	+/-	-	-	6-8 years
Anaplastic Astrocytoma	III	+	+	+/-	-	2-3 years
Glioblastoma	IV	+	+	+	+	1-2 year

Glioma Grading and Natural History

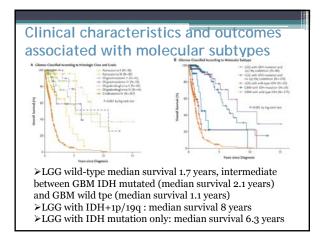

Median Survival (Range)

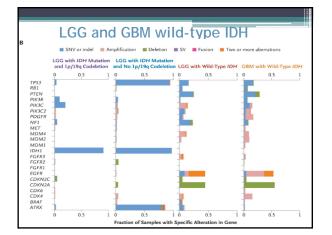
<u>Astrocytoma</u>	Oligodendroglioma		
 Grade I: >10 years (curative) Benign histopathological features Pilocytic astrocytoma (PA), 	 Low Grade: 15 years (8-20 years) 		
pleomorphic xanthroastrocytomas (PXA), subependymal giant cell astrocytomas (SEGA)	Grade III Anaplastic: 5 years		
 Grade II: 6.5 years (5-8 years) Nuclear atypia 			


- Grade III: 3 years
- Nuclear atypia + mitosis
- Grade IV: 12-18 months
- Nuclear atypia Mitosis
- Endothelial proliferation and/or
- necrosis
- DeAngelis LM. N Engl J Med 2001;344:114-123 Van den Bent MJ, et al. Crit Rev Oncol Hematol 2008;66:262-272.

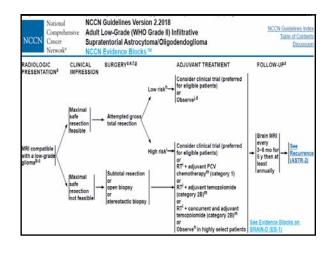
Low Grade Gliomas WHO II

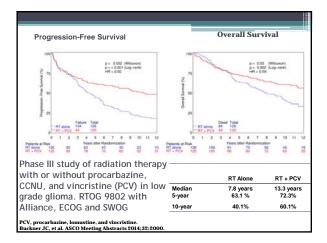
- · This includes astrocytomas, oligodendrogliomas, or mixed oligoastrocytomas (term no longer used).
- Most commonly occur in children and young adults; biphasic age distribution > 1st peak around ages 6-12 years
 > 2nd peak between 3rd and 5th decades
- + Between 50–80% present with seizure (infiltration rather than compression)
- They are called "low-grade" but they are NOT benign
 ➢ Median OS is around 6.5−8 years
- Very heterogenous group with varying clinical behavior
 > Good prognostic signs include: age <40 years, seizures at presentation and no additional neurological deficits, KPS ≥70, MMSE >26/30 > Poor prognostic signs include: tumor diameter >5-6 cm and the presence
 - of contrast enhancement





LGG molecular classification

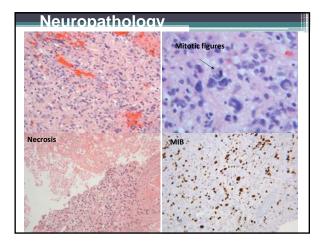

- 1. IDH + 1p/19q codeletion
- 2. IDH mutant
- 3. IDH wild-type



Treatment of Low-grade Gliomas (LGG)

- Standard treatment options for diffuse astrocytomas (WHO grade II) include the following:
 - Surgery alone
 - Surgery followed by radiation therapy
 - Surgery followed by chemotherapy
- Surgery followed by radiation therapy and chemotherapy

Patients with grade II glioma:


- $^\circ\,$ with less than gross total tumor resection or who are >40 years of age
- RT + PCV prolongs both progression-free and overall survival compared with RT alone
 - Median survival is increased by 5.5 years
 - Five-year and 10-year survival are increased by 9% and 20%, respectively

PCV, procarbazine, lomustine, and vincristine. Buckner JC, et al. ASCO Meeting Abstracts 2014;32:2000.

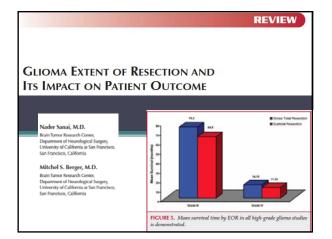
Key Points and Implications for Patient Care

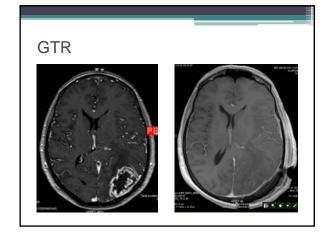
- Important role for surgical resection
- Observation for gross total resection
 Age cut off?
- Radiation therapy alone is not adequate for high-risk low-grade glioma
- Chemotherapy considerations

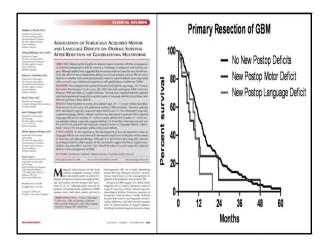
High Grade Gliomas Anaplastic Astrocytoma **Glioblastoma** Most aggressive, Grade III glioma Histology: • (30–40 yo) Grade IV, poorly differentiated . Often recurs as higher-Necrosis, vascular endothelial hyperplasia, frequent mitoses, cellular atypia grade tumor Median survival 36-48 Neovascularization and pseudopallisading months Most common in older adults - peak 55-65 yr Rapid growth ; size may double every 10 days

Malignant Glioma Conventional Therapy

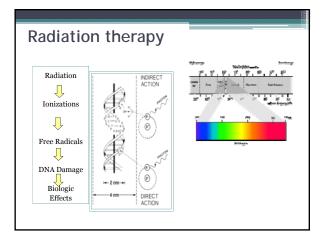
Surgery
 Histopathologic diagnosis
 Benefit of cytoreduction

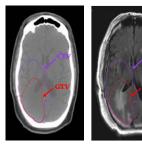

Radiation therapy




T T

 Chemotherapy Nitrosourea-based regimens

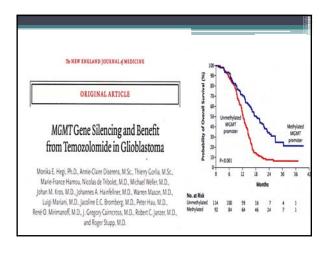

External beam to ~6,000 cGy



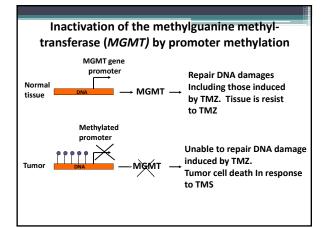
Radiation Planning for Gliomas

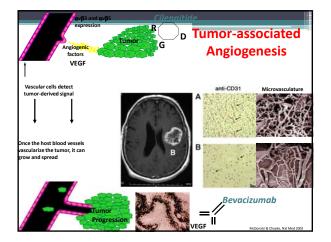
GTV = Gross Target Volume Includes the radiographic disease CTV = Clinical Target Volume Includes Includes microscopic disease or region at risk of recurrence, not typically radiographically visible

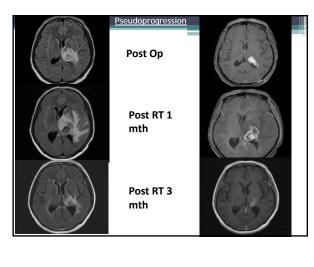
Chemotherapy for Gliomas (HGG)


FDA Approvals

2005


- June, 1996: Carmustine wafer for recurrent GB January, 1999: Temozolomide for anaplastic astrocytoma
- February, 2003: Carmustine wafer for newly diagnosed GB
- March, 2005: Temozolomide for newly diagnosed GB · May, 2009: Bevacizumab for progressive GB
- April, 2011: Tumor treatment fields for recurrent GB
- October, 2015: Tumor treatment fields in combination
 with temozolomide for newly diagnosed GB


NEJM (2005) 352:987-996.



Response Assessment in Neurooncology (RANO)

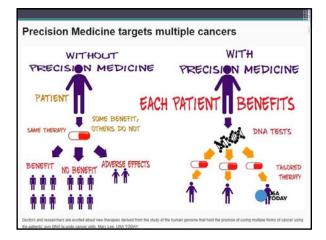
• Consideration of the following:

- Status of enhancing disease (post contrast T1)
 Assessment of nonenhancing (T2/FLAIR) disease
- Corticosteriod use
- Performance and clinical status
- Categories
 - Complete Response
- Partial Response
- Stable Disease
- Progressive Disease

J Clin Oncol 28: 1963-1972

Tumor Treating Fields (Optune)

- External, non-invasive, wearable, portable, patient controlled
- Intermediate frequency 100-300 kHz
- No half-life (requires continual use)
- Reaches deep tissues without
 attenuation of energy
- Does not stimulate nerves or muscles
- Does not heat tissue
- Personalized transducer array layout maximizes TTFields to the tumor (NovoTAL program)

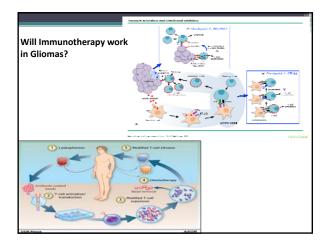


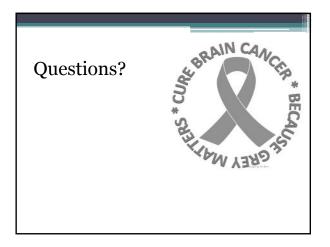
Recurrent Glioblastoma

- OS 8-10 months
- FDA approved : CCNU, Avastin, Optune
- NCCN guidelines \rightarrow consider clinical trial
- Clinical trial directions
- Immunotherapy
 - Cell
 - Vaccine
 - Immunecheckpoint inhibitors (ICI)
- Personalized therapy
 - Molecular profiling
 - Feed into Phase I studies or basket studies, umbrella studies
- Oncolytic or modified viruses
- Polio, Herpes, Adeno, Retro, Mumps

Implications for Patient Care

- Obtain MGMT status and consider role of TMZ in unmethylated patients.
- Use of Optune device during maintenance TMZ dependent upon compliance and motivation.
- Management of the elderly or low KPS patient with hypofractionated RT +/- TMZ.
- Clinical trial consideration:
- Be aware of ALC and factors depressing (RT, TMZ, steroids).
- Next generation sequencing data




Gene	Alteration or target	Target frequency in glioblastoma ^a (%)	Candidate therapy (drug example)
Growth factor #	eceptors		
EGFR	Deletion (EGFPMII), mutation, translocation and/or amplification	55	EGFR vaccine or antibody-drug conjugate (rindopepimut, A8T-414)
KIT	Amplification, mutation	10	KIT inhibitor (imatinib)
PDGFRA	Amplification	15	PDGFR inhibitor (dasatnib)
FGFR1, FGFR3	Translocation (e.g. FGFR3-TACC3)	3	FGFR1/3 inhibitor (INI-42756493)
MET	Amplification, translocation	3	MET inhibitor (cabczantinib)
MAPK and PI3K	/mTOR signaling pathways		
PTEN	Deletion, mutation	40	AKT inhibitor, mTOR inhibitor (voxtalisb)
PIKICA	Amplification, mutation	10	mTOR inhibitor, PI3K inhibitor (buparlisib)
NF1	Deletion, mutation	14	MEK inhibitor (tramedinib)
BRAF	Mutation (BRAF V600E)	2	BRAF inhibitor (vernurafenib), MEK inhibitor (trametinib
Cell cycle pathe	rays		
MDM2	Amplification	10	MDM2 inhibitor (AMG232)
TPS3	Wild-type (no mutations)	60	MDM2 inhibitor (AMG232)
CDK4/6	Amplification	20	CDK4/6 inhibitor (ribociclib)
RB1	Wild-type (no mutations)	90	CDK4/6 inhibitor (ribociclib)
Others			
IDH1	Mutation	6	IDH1 inhibitor (AG120)
MYC MYCN	Amplification	5	Bromodomain inhibitor (OTX-015)

Challenges facing targeted therapy in glioblastoma

- > None of the recurrent genomic variants in glioblastoma has been strongly associated with clear prognostic and predictive value
- > Inter- and intra-tumor genomic heterogeneity
- > Limited opportunities for re-operation
- > BBB, most tested agents weren't primarily designed for intracranial neoplasms. BBB becomes significant barrier in the infiltrative nonenhancing areas of the tumor.

